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Abstract 

Background: Alzheimer’s disease (AD) is a chronic, progressive, degenerative disease 

characterized by cognitive dysfunction, including verbal memory loss. Studies were lacking in 

examining the longitudinal effect of polygenic hazard score on the Rey Auditory Verbal 

Learning Test-Delayed Total (AVDELTOT) score (a common measure of verbal memory). A 

key step in analyzing longitudinal changes in cognitive measures using a linear mixed model 

(LMM) is choosing a suitable covariance structure.  

Objectives: The study aims to determine the association between the polygenic hazard score and 

the AVDELTOT score accounting for repeated measures (the covariance structure). 

Methods: The AVDELTOT scores were collected at baseline, 12, 24, 36, and 48 months from 

283 participants with AD, 347 with cognitive normal, and 846 with mild cognitive impairment in 

the Alzheimer’s Disease Neuroimaging Initiative. The Bayesian information criterion statistic 

was used to select the best covariance structure from 10 covariance structures in longitudinal 

analysis of AVDELTOT scores. The multivariable, LMM was used to investigate the effect of 

polygenic hazard score status (low vs. medium vs. high) on changes in AVDELTOT scores while 

adjusted for age, gender, education, APOE-ε4 genotype, and baseline Mini-Mental State 

Examination (MMSE) score.  

Results: One-way analysis of variance revealed significant differences in AVDELTOT scores, 

MMSE, and polygenic hazard score among AD diagnoses at baseline. Bayesian information 

criterion favored the compound symmetry covariance structure in the LMM analysis. Using the 

multivariate LMM, the APOE-ε4 allele and high polygenic hazard score value was significantly 

associated with AVDELTOT declines. Significant polygenic hazard score status by follow-up 

visit interactions was discovered.  
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Conclusion: Our findings provide the first evidence of the effect of polygenic hazard score status 

and APOE-ε4 allele on declines in verbal memory in people with AD.  

Keywords: Alzheimer’s disease, APOE-ε4, covariance structure, linear mixed model,  

polygenic hazard score, verbal memory  
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Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disease with 

memory problems centered on episodic memory (Lane et al., 2018). It is known that 

physiological changes occur in the brain many years before AD is diagnosed (Jack et al., 2013). 

Yet, the direct role of changes such as amyloid deposits and tau deposition has recently had 

conflicting reports as they were described as being present in cognitively unimpaired older adults 

(Sullivan et al., 2021). Knowing this makes it critical to understand the progression of the disease 

from a population health perspective. Understanding factors that can further elucidate AD 

progression characteristics will be needed for clinical care. Typically, diagnostic criteria of AD 

include assessment of general cognitive decline, observance of changes in personality, cognitive 

tests that elicit the loss of long- and short-term memories, loss of language memory and fluency, 

and onset of atypical behaviors (Jack et al., 2013; Weller & Budson, 2018). Once diagnosed, one 

way to consider progression is through measurement of verbal memory and verbal fluency, but 

longitudinal studies are needed on verbal memory and fluency tests (Mura et al., 2022) 

 

AD has a substantial genetic component with heritability of 58% to 79% (Gatz et al., 

2006);
 
while 95% of all people with AD are defined as late-onset AD (defined as AD with an 

onset age ≥ 65 years; Bettens et al., 2010). Genome-wide association studies (GWAS) have 

identified more than 30 known risk loci for AD (Jansen et al., 2019; Kunkle et al., 2019), and 

recently, genome-wide data in a genetic epidemiology framework were used to develop a 

polygenic hazard score (PHS) to quantify the age-associated risk for developing AD (Desikan et 

al., 2017). The PHS has been used to predict overall risk of AD, age at onset, clinical 

phenotypes, and in the design of AD clinical trials (Desikan et al., 2017; Kauppi et al., 2018; Tan 

et al., 2017). 
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 It is clinically significant to understand the links between verbal memory and learning 

with the progression of AD since impaired verbal memory is linked to progressive aphasia (Foxe 

et al., 2021). AD studies frequently use the Rey Auditory Verbal Learning Test (RAVLT) to 

assess immediate or delayed recall and recognition memory (van den Berg et al., 2020). Though 

AD’s risks, progression, and phenotypes have been a research focus, no study has focused on the 

PHS score on RAVLT measures. The RAVLT is commonly used to assess verbal memory and 

has been extensively validated for use in cognitively normal and impaired people (Poreh et al., 

2012). It is known that age, education, and gender may influence RAVLT performance 

(Magalhães & Hamdan, 2010), which has been used to distinguish AD, mild cognitive 

impairment (MCI), and cognitively normal (CN; Ding et al., 2019; Messinis et al., 2016).  

 

In addition to the lack of understanding of PHS on AVDELTOT scores, studies have not 

reported analysis of longitudinal changes of continuous outcomes of AD with a suitable 

covariance structure using a linear mixed model (LMM; George & Aban, 2015; Littell et al., 

2000). LMMs, including both fixed and random effects, have been proposed to analyze the 

longitudinal effect of APOE-ε4 allele on AD-related phenotypes (e.g., Fokoh et al., 2021; 

Mormino et al., 2014; Paranjpe et al., 2019; Sutphen et al., 2015). For example, one study 

reported significant interactions between Aβ and APOE-ε4 status in predicting change in logical 

memory scores in healthy individuals using LMM (Mormino et al., 2014). Subsequently, a pilot 

study on patients with heart failure suggested no significant association of APOE-ε4 allele with 

delayed (recall) memory (Pressler et al., 2017). Through repeated measures of longitudinal study 

over time are correlated, LMMs can be used to account for repeated measures in longitudinal 

studies (Wang, 2016; West et al., 2014). This study fills the current gap in the scientific 
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knowledge related to the association between repeated measures for AD by comparing 10 

covariance structures in longitudinal analysis of the AVDELTOT score in AD using LMM and 

examining the effect of PHS status on longitudinal declines in AVDELTOT scores. 

 

Methods 

Sample 

Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public–

private partnership and began in 2004. Currently, the ADNI has undergone four phases: ADNI1, 

ADNI GO, ADNI2, and ADNI3. The ADNI project is ongoing and employs a multicenter, 

longitudinal design aiming to understand relationships among clinical and cognitive 

assessments, imaging, genetic information, and biochemical biomarkers currently used for the 

early diagnosis of AD. The primary goal of ADNI has been to test whether the collected 

information can be combined to measure and understand the progression of MCI and early AD. 

The ADNI study provides services in the United States and Canada. There was an institutional 

review board exemption for the current study due to secondary data analysis.  

 

Measures 

Social Demographics 

This analysis included three demographic measures: gender, age, and race/ethnicity. 

Gender was self-reported as either male or female. Age was classified into three groups: ≤ 65 

years, 66–75 years, and 76+ years. Years of education were classified into ≤ 12 years, 13–16 

years, and 17+ years. Only non-Hispanic White individuals were used for the present analysis. 
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Cognitive Phenotypes 

The Folstein Mini-Mental State Examination (MMSE) is a brief questionnaire that 

measures global cognitive impairment by evaluating five cognitive domains: orientation, 

registration, attention and calculation, recall, and language (Folstein et al., 1983). The MMSE 

has well-established psychometrics, with scores on the Folstein MMSE ranging from 0–30, with 

30 being no cognitive impairment.  

 

The RAVLT—a commonly used test of verbal episodic memory—includes a list of 15 

unrelated words presented orally to the subject (Schmidt, 1996). The test has five consecutive 

learning trials: repetitions to learn the unstructured verbal material, followed by a 30-min 

delayed period for free recall, and a subsequent recognition trial that includes 30 words (15 from 

the learning trials), and 15 unrelated words. A learning score is calculated using the difference 

between the last and the first immediate recall trials. In the present study, we used the 30-min 

auditory verbal delayed recall total (AVDELTOT) score, which ranges from 0 to 15. 

 

APOE Genotypes 

The data of APOE-ε4 genotypes were extracted from the ADNI database. APOE-ε4 

carriers were defined as individuals with at least one ε4 allele (ε4/ ε4, ε4/ ε3, or ε4/ ε2 as APOE-

ε4-1+), while non-carriers were defined as individuals with no ε4 allele (APOE-ε4-0; Table 1). 

 

Polygenic Hazard Score (PHS) 

The PHS data were downloaded from the ADNI website (desikanlab.html; Desikan et al., 

2017). The PHS data were based on AD-associated single nucleotide polymorphisms (SNPs) 
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from previous GWAS data, such as the International Genomics of Alzheimer’s Project and the 

Alzheimer’s Disease Genetics Consortium. Everyone has a PHS to reflect an individual’s risk for 

developing AD based on age and genotype. The PHS has been replicated in Phase 2 of the 

Alzheimer’s Disease Genetics Consortium, the National Institute on Aging Alzheimer’s Disease 

Centers, and ADNI. In the present study, the PHS was categorized as low, medium, and high 

according to the tertile distribution of PHS in all participants. 

 

Statistical Methods 

Baseline Descriptive Statistics  

The categorical variables were presented in their raw values along with the proportions 

for categorical variables, and continuous variables were introduced in the form of mean ± 

standard deviation (SD). A chi-square test was used to examine the associations of categorical 

variables with AD diagnostics. At the same time, a one-way analysis of variance was performed 

to determine the differences in continuous variables among AD diagnostics.  

 

LMM 

 The LMM, including fixed and random effects for a continuous outcome variable in a 

longitudinal study, can be expressed as equation (1). 

𝛶𝑖𝑗𝑘  = 𝜇 + 𝛼𝑖 + 𝑏𝑖𝑗 + 𝛾𝑘 + (𝛼𝛾)𝑖𝑘 + 𝜀𝑖𝑗𝑘                                          (1) 

Where 

Yiik is the value of the outcome for individual j at follow-up time k with treatment (or   

covariate) i  

μ is the intercept of the model 
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𝛼𝑖 is the effect for treatment (or covariate) i  

bij is a random effect for subject j with treatment (or covariate) i  

𝛾𝑘is the effect of time (follow-up visit) k 

(𝛼𝛾)𝑖𝑘 is the effect for treatment (or covariate) x time interaction  

εijk is the random error associated with outcome at time k on the j
th

 individual for  

treatment (or covariate) i 

 The Bayesian information criterion (BIC) statistic (Simonoff, 2003) was used to select 

the best covariance structure from 10 commonly used covariance structures: Ante-dependence 

(ANTE), Autoregressive (AR), Heterogeneous Autoregressive (ARH), First-order, 

Autoregressive moving average (ARMA), Compound Symmetry (CS), Heterogeneous 

Compound Symmetry (CSH), Huynh-Feldt (HF), banded Toeplitz structure (TOEP), 

Unstructured (UN), and Variance Components (VC). The model with smaller BIC fits the data 

better. 

 

The multivariable repeated measures LMMs, including PHS status as fixed effect and 

subject as random effect, were used to examine the longitudinal changes in AVDELTOT 

score as a continuous trait adjusting for age, sex, race, education, APOE-ε4, and MMSE. The 

interaction between PHS status and follow-up visits was tested. The repeated measures 

longitudinal analyses were performed using PROC MIXED in SAS (version 9.4). All statistical 

analysis was performed using SAS 9.4. 
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Results 

Baseline Descriptive Statistics 

After merging data, the total sample size of the baseline data was 1,476, including 283 

with AD, 347 with CN, and 846 with MCI (Table 1). All persons were non-Hispanic White with 

AVDELTOT scores, APOE- 4, and PHS values. The AD group had lower mean values in the 

MMSE indicative of cognitive impairment, while the CN and MCI group had MMSE scores that 

could be interpreted as cognitively unimpaired. The AD group showed lower mean scores for the 

AVDELTOT but higher PHS scores than those in CN and MCI groups.  

 

Covariance Structure Selection in LMM 

In the LMMs, the BIC statistics favored the CS structure (Table 2). The BIC value for CS 

was 25,076.3, which was lower than any other covariance structure. By the CS structure, we 

mean that the correlation between two repeated measures was constant irrespective of the lag or 

length of time between them. We chose CS as the favorite model for further analysis. 

 

LMM Analysis of AVDELTOT Scores 

Using a CS model, the multivariable LMM analysis results are presented in Table 3. All 

the variables were associated with AVDELTOT scores (p < .05). The APOE-ε4 was significantly 

associated with AVDELTOT declines (t = -3.80, p = .0001), while low and medium PHS status 

compared with high PHS were positively associated with AVDELTOT scores (t = 2.26, p = 

.0240 and t = 3.14, p = .0017, respectively). Furthermore, AD and MCI were negatively 

associated with AVDELTOT scores compared with CN (t = -13.55, p < .0001 and t = -8.90, p < 

.0001, respectively). 
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The AVDELTOT scores significantly declined at 12 months, 36 months, and 48 months 

compared with baseline (p = .0065, < .0001, and .0033, respectively). Significant interactions 

were found between PHS-Low and 12 months (p = .0200), PHS-Low and PHS-Medium and 36 

months (p = .0048 and .0104, respectively), PHS-Low and PHS-Medium and 48 months (p = 

.0217 and.0436, respectively). A graphical display of two-way interactions between PHS statis 

and visits is further shown in Figure 1. 

 

Discussion 

To the best of our knowledge, this is the first longitudinal analysis of the AVDELTOT 

scores in AD using repeated LMM measuring to examine the association between PHS status 

and AVDELTOT across time (longitudinal). In addition, we have considered the dependency of 

measures from the same subject (repeated measures/covariance structure). Researchers have 

elucidated that PHS scores help assess risk for AD, clinical phenotypes, and are predictive of 

general longitudinal decline (Desikan et al., 2017, Kauppi et al., 2018; Tan et al., 2017), but this 

present study adds valuable information about specific declines in verbal memory. We found 

significant differences in AVDELTOT scores among AD, MCI, and CN at baseline, which is 

interesting because it may be challenging to differentiate early AD from MCI clinically. 

Furthermore, the CS covariance structures outperformed the other models’ LMM analysis of 

AVDELTOT scores. In addition, individuals with at least one APOE-ε4 allele had significant 

AVDELTOT score declines compared with those without APOE-ε4 allele, which is congruent 

with the known critical importance of the ε4 allele of APOE and AD progression (Sienski et al., 

2021). Since we know that AD has a genetic component, the finding that higher PHS scores are 

not only associated with risk but also associated with a decline in AVDELTOT scores is 
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important. Discovering that those with medium PHS scores did not have as much decline in 

AVDELTOT scores affirms the complex and multifactorial risks for AD.  

 

The LMM is commonly used to deal with correlated data in repeated measures of 

longitudinal studies (Wang, 2016; West et al., 2014). However, one crucial step in analysis of 

longitudinal changes in continuous outcomes using LMM is to choose a suitable covariance 

structure (George & Aban, 2015; Littell et al., 2000). A helpful tool for selecting a covariance 

structure is the use of information criteria (IC) such as AIC, the small sample corrected AIC 

(AICC), and BIC (George & Aban, 2015; Gomez et al., 2005; Littell et al., 2000). It has been 

suggested that the consistent IC (BIC) seemed to be more accurate than efficient (AIC, AICC) 

criteria (George & Aban, 2015; McNeish & Harring, 2020). For example, AIC, AICC, and BIC 

have been used to compare CS, AR, TOEP, and the UN covariance structures in analysis of 

longitudinal imaging data (George & Aban, 2015). In the present study, we compared 10 

covariance structures in longitudinal analysis of the AVDELTOT score in AD using LMM. We 

found that CS had the lowest BIC value and was the best covariance structure. The CS structure 

assumed a correlation between two separate measurements, but the correlation was constant 

regardless of how far apart the measurements were. Then we examined the effect of PHS status 

on longitudinal declines in AVDELTOT scores using the CS covariance structure.  

 

LMMs have been used to analyze longitudinal correlated data on the effect of APOE-ε4 

allele on AD-related phenotypes (e.g., Fokoh et al., 2021; Mormino et al., 2014; Paranjpe et al., 

2019; Sutphen et al., 2015). One study reported significant interactions between Aβ and APOE-

ε4 allele status in predicting change in logical memory scores in healthy individuals using LMM 
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(Mormino et al., 2014). A pilot study on heart failure patients also suggested no significant 

association of APOE-ε4 allele with delayed (recall) memory (Pressler et al., 2017). Moreover, 

the APOE-ε4 allele was associated with decreased interhemispheric resting-state functional 

connectivity, which was attributed to carrier memory performance (Luo et al., 2016). One recent 

study found the effect of APOE-ɛ4 genotype on the logical memory declines related to AD 

(Fokoh et al., 2021). The present study added that APOE-ε4 allele was associated with 

longitudinal declines in verbal memory in AD. This finding is consistent with other recent 

studies that reported more rapid AD progression for those that pose the APOE-ε4 (Chen et al., 

2021).  

 

The PHS has been used to predict individual risk of developing AD, AD age at onset, and 

clinical phenotypes, as well as help design AD clinical trials (Desikan et al., 2017; Kauppi et al., 

2018; Tan et al., 2017). The present study further added that PHS scores are associated with the 

decline in AVDELTOT scores, and there are two-way interactions between PHS status and 

follow-up visits.  

 

The findings from the present study are somewhat congruent with other research. In this 

study, we report significantly lower AVDELTOT scores of verbal memory in AD and MCI 

compared with CN individuals. The RAVLT score has been used to distinguish AD from MCI 

and dementia (Ding et al., 2019; Messinis et al., 2016). Likewise, the 30-min delayed recall score 

of the RAVLT has been used to predict Aβ status (Kandel et al., 2015). Moreover, one study 

examined sex differences in florbetapir positron emission tomography amyloid positivity (A
+
) on 

verbal learning and memory performance and hippocampal volume in CN and early MCI 
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individuals (Caldwell et al., 2017). Another study investigated the relationship between the 

asymmetry magnitude in hippocampal subfields and verbal memory decline as assessed by 

RAVLT (Sarica et al., 2018).  

 

There are several strengths in this study. First, the ADNI is a longitudinal study that 

provides a large sample for analysis. Second, we conducted covariance structure selection in 

LMM analysis of AVDELTOT scores. Third, this is the first study to examine the association of 

PHS status with the longitudinal changes in AVDELTOT scores. Finally, we detected 

interactions between PHS status and follow-up visits. 

 

Several limitations need to be acknowledged. First, the current study was time limited by 

the data set, which provided 4 years of follow-up. Second, the present study found longitudinal 

declines only in age 75 years and above group. Furthermore, this study does not account for 

current treatment of AD patients. In addition, the results of this study cannot be generalized to all 

the patient population since it was restricted to non-Hispanic White people. 

 

There are many future implications from this work. Future study designs could include 

plans to investigate how APOE-ε4 alleles and PHS affects early-onset AD patients and late-onset 

AD patients differently concerning the verbal memory test. As well, future studies could 

consider the incorporation of the PHS to better understand other specific aspects of disease 

progression. 
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Conclusion 

This study provides new information about verbal learning and progression of AD and 

MCI. This study compared 10 covariance structures in the LMM analysis of longitudinal changes 

in AVDELTOT scores, found CS covariance structure is the best and identified differences in 

AVDELTOT scores among three diagnostic groups at baseline. Further, we described the 

significant decline in AVDELTOT scores at 4-year follow-ups. Using LMM analysis, our 

findings provide the first evidence of the longitudinal effect of APOE-ε4 allele and PHS scores 

on the AVDELTOT scores related to AD and make it clear that verbal memory examination 

scores could be a good predictor for AD.  
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Figure Legend 

FIGURE 1 

PHS status by follow-up visit interaction for AVDELTOT score.  
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Figure 1 

 

 

 
 
Note. PHS = Polygenic hazard score; AVDELTOT = Rey Auditory Verbal Learning Test-Delayed Total. The X axis is 
PHS status. The Y axis is the estimated marginal means of the AVDELTOT score. bl = baseline; m12, m24, m36 and 
m48 = 12, 24, 36 and 48 months, respectively. 
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Table 1  

Descriptive Statistics at Baseline  

 
Variable 
 CN MCI AD 

Gender    

  Male 
185 

 
493 160 

  Female 162 353 123 

APOE- ε4 allele    

  0 255 429 94 

  1+ 92 417 189 

PHS-Level    

  Low 115 148 31 

  Medium 209 525 153 

  High 23 173 99 

PHS    

  Mean ±SD 0.03±0.67 0.43±0.78 0.80±0.85 

Age (years)    

  < 65 6 127 36 

  65-75 176 360 96 

  75+ 166 359 151 

Education (years)    

  ≤ 12 37 134 70 

  13-16 152 339 127 

  17+ 158 373 86 

MMSE    

  Mean ±SD 29.10±1.10 27.80±1.79 23.21±2.03 

AVDELTOT    

  Mean ±SD 12.87±2.38 10.75±3.52 7.12±3.80 

Note. CN = Cognitive normal; MCI = Mild cognitive impairment; AD = Alzheimer disease; PHS = Polygenic hazard 
score; MMSE = Mini mental state examination; AVDELTOT = Rey Auditory Verbal Learning Test-Delayed Total; SD = 
Standard deviation.  
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Table 2 

Covariance Structure Selection in Linear Mixed Model Analysis  

 

Structure -2 Log Likelihood BIC 

ANTE(1) 25437.0 25502.6 

AR(1) 25472.3 25486.9 

ARH(1) 25469.2 25513.0 

ARMA(1,1) 25059.8 25081.7 

CS 25061.7 25076.3 

CSH 25058.7 25102.5 

HF 25046.5 25090.3 

TOEP 25048.7 25085.2 

UN 24994.6 25104.1 

VC 26729.1 26736.4 

Note. BIC = Bayesian information criterion statistic; ANTE = Ante-dependence; AR = Autoregressive; ARH = 
Heterogeneous Autoregressive; ARMA = First-order Autoregressive moving average; CS = Compound Symmetry; 
CSH = Heterogeneous Compound Symmetry, HF = Huynh-Feldt; TOEP = a banded Toeplitz structure; UN = 
Unstructured;  VC = Variance Components 
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Table 3 

Linear Mixed Model Analysis of Polygenic Hazard Score with AVDELTOT Score  

 
Variable β ± SE t values p values 

Gender (ref=male)   
 

 

   Female -0.37±0.15 -2.48 .0133 

APOE- ε4 (ref=0    

   1+ -0.72±0.19 -3.80 .0001 

PHS-level (ref=High)    

   Low 0.75±0.33 2.26 .0240 

   Medium 0.77±0.25 3.14 .0017 

Age (ref= <65)    

   65-75 -0.07±0.07 -0.30 .7616 

   75+ 0.68±0.07 -2.77 .0057 

Education (ref= ≤ 12    

   13-16 0.33±0.22 1.56 .1181 

   17+ 0.53±0.22 2.41 .0160 

Diagnosis (ref=CN)     

   AD -3.62±0.27 -13.55 <.0001 

   MCI -1.64±0.18 -8.90 <.0001 

 MMSE 0.30±0.02 19.55 <.0001 

Visit (ref=baseline)    

   12 months -0.52±0.19 -2.72 .0065 

   24 months -0.34±0.21 -1.64 .1020 

   36 months -1.04±0.25 -4.09 <.0001 

   48 months -0.83±0.30 -2.94 .0033 

Visit * PHS-Level (ref=Baseline* PHS-High)    

  12 months* PHS-Low 0.62±0.27 2.33 .0200 

  12 months* PHS-Medium 0.40±0.22 1.82 .0691 

  24 months* PHS-Low 0.48±0.28 1.69 .0905 

  24 months* PHS- Medium 0.15±0.24 0.64 .5247 

  36 months* PHS-Low 0.95±0.34 2.82 .0048 

  36 months* PHS- Medium 0.73±0.28 2.56 0.0104 

  48 months* PHS-Low 0.87±0.38 2.32 0.0217 

  48 months* PHS- Medium 0.66±0.33 2.02 0.0436 

Note. AVDELTOT = Rey Auditory Verbal Learning Test-Delayed Total; PHS = Polygenic hazard score; CN = Cognitive 
normal; AD = Alzheimer Disease; MCI = Mild Cognitive Impairment; MMSE = Mini mental state examination; β = 
adjusted regression coefficient, SE = standard error.  
p value is based on t test in  multivariate linear mixed model adjusted for gender, age, education, diagnosis, visit, 
and MMSE.  
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